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Abstract This paper presents a predictive model for the
determination of different types of corrosion by using
electrochemical impedance spectroscopy curves and artificial
neural network. This proposed model obtains predictions for
three different types of corrosion by using Nyquist impedance
curves from four input variables: inhibitor concentration, time
of exposure, and the real and imaginary experimental
component of these curves. The model takes into account
the variations of inhibitor concentration over steel to decrease
the corrosion rate. For the network, the Levenberg–Marquardt
learning algorithm, the hyperbolic tangent sigmoid transfer
function and the linear transfer function were used. The best
fitting training data set was obtained with five neurons in the
hidden layer, which made possible to predict satisfactory
efficiency (R>0.99). On the validation of the data set,
simulations and theoretical data tests were in good agreement
(R>0.9905). The developed model can be used for the
determination of the type of curves related to the nature
phenomena and rate of corrosion at the metal surface.
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Introduction

Corrosion is one of the main problems in the oil and gas
production and transportation industry. Oil field corrosion

manifests itself in several form, these are “sweet corrosion”
generated by carbon dioxide (CO2) and/or hydrogen sulfide
(H2S) called “sour corrosion”, in water injection systems.
The most prevalent form of attack found is produced by the
presence of oxygen (O2) [1]. Inhibitors are currently used to
protect against corrosion in all petrochemical facilities in
the world because it is cost-effective and flexible. Nitrogen-
based organic inhibitors, such as imidazolines or their salts
have been successfully used in these applications even
without an understanding of the inhibition mechanism [2].

Corrosion inhibition by organic compounds is related to
their adsorption properties. Adsorption depends on the
nature and the state of the metal surface (microstructure and
chemical composition), on the type of corrosive environ-
ment, and on the chemical structure of the inhibitor [3].
According to [4], inhibitors incorporate to the corrosion
product layer and form a protective barrier between the
base metal and the corrosive media. It suggests that the
structure of the inhibitor must be appropriate to interact
with the corrosion products and that they can be effective
on iron carbonates or sulfides, but not effective on oxides.
In a previous work [11], carboxyamido-imidazoline was
evaluated as corrosion inhibitor in the CO2 corrosion of
pipeline steel; so, the aim of this work is the development,
application, and study of the obtained data in this work with
a neural network model. This model can be used to
determinate the type of impedance spectroscopy curves
from different inhibitor concentrations without experimen-
tation. Data evaluation was obtained by using electrochem-
ical impedance spectroscopy (EIS) in an environment
containing NaCl and CO2 to simulate environments found
in the transport or crude oil. The impedance spectroscopy
curve was obtained to predict corrosion current density
values (Icorr) with the neural network model; the results are
compared with tested experimental data.
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Theoretical background

Electrochemical impedance is a powerful tool used in the
measurement and analysis of electrochemical phenomena,
including corrosion. A variable AC frequency signal is

applied to the corrosion system, and a Nyquist or Bode plot
is obtained where electrical properties, kinetic and mecha-
nistic as well as electrochemical, and corrosion rate can be
derived. Once the experimental data were obtained,
attention is drawn in obtaining the parameters by two ways
[5], by means of mathematical modeling or through
proposed equivalent electric circuits (Fig. 1). Basic param-
eters can be calculated such as solution resistance, charge
transfer resistance, double-layer capacitance, and diffusion–
adsorption phenomena among others (Figs. 2b, 3, and 4).

For small applied overpotentials, η, (η = E − Ecorr),
where Ecorr is the open circuit corrosion potential in volts,
the net current is proportional to the overpotential:

Inet ¼ K
�
Rp ð1Þ

where Rp is the polarization resistance. The corrosion rate
of the metal can then be related to 1/Rp by a coefficient,
which depends on the mechanism of the corrosion process.
This Rp is one component of the simplest equivalent circuit

Fig. 1 A simple electric circuit

Fig. 2 a Nyquist impedance
plot and equivalent used
electric circuit. b Type 1. charge
transfer controlled corrosion
impedance plot for metal
corrosion
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for the corroding metal. However, for alternating applied
voltages, there is another component of the resulting current
that must be allowed for, because of the double-layer
capacitance Cdc of the surface. Because a current can flow
through the interface, causing oxidation or reduction of
species, or charge or discharge of the capacitance, these two
components are in parallel, and a better equivalent circuit is
that shown in Fig. 2a. Also, the effect of solution resistance
is added in series to the circuit.

For this circuit, consider how the current varies with
potential or, if potential changes with time, how the current
varies with time. Consider the voltage as a function of time
E (t) applied to the circuit (Fig. 1). The current flowing
through the resistance is given by the previous equation in
this case as:

I tð Þ ¼ E tð Þ�Rp ð2Þ
The current is the Faradaic current, related to oxidation

or reduction of species, in which the amount of material
oxidized or reduced is related to the current by Faradays

laws. The current flowing through the capacitor depends
not on the voltage but on the rate of change of the voltage:

I tð Þ ¼ CdcdE tð Þ=dt I tð Þ ¼ CdcdE tð Þ=dt ð3Þ
And the total current is.

I tð Þ ¼ E tð Þ=Rt þ Cdc d E tð Þ=d t ð4Þ
If the rate of change of voltage is small, then the second term

is small, and the current is given by the first term such that:

Rp ¼ E tð Þ=I tð Þ ð5Þ
and this is what is obtained with conventional polarization
resistance methods with slow potential sweeps, inversely
related to the corrosion rate.

When we talk about an AC signal, we mean a sinusoidal
signal, and generally the applied signal will be an applied
voltage as described by:

E tð Þ ¼ E0 sin wtð Þ ð6Þ

d E tð Þ=d t ¼ E0w cos wtð Þ ð7Þ

Fig. 3 Type 2. Diffusion con-
trolled corrosion impedance plot
for metal corrosion

Fig. 4 Type 3. Impedance plot
showing adsorption controlled
corrosion effects
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and when

I tð Þ ¼ E tð Þ
Rt

þ Cdc
d E tð Þ
dt

ð8Þ

I tð Þ ¼ E0

Rt
sin wtð Þ þ E0w � Cdc � cos wtð Þ ð9Þ

When we plot the current against the time, the first term
of the current at (Eq. 9) is in phase with the applied voltage,
the second term is 90 (π/2 rad) out of phase. The magnitude
of both terms is proportional to the magnitude of the
applied voltage E0.

When we carry out a measurement, it is the total current
that is measured, not the two components described above,
and it is useful to have a simple expression for the total
current we could also express (Eq. 9) as:

I tð Þ ¼ I0 sin wtð Þ cos 7 þ cos wtð Þ sin 7½ � ð10Þ
or

I tð Þ ¼ I0 sin wt þ 7ð Þ ð11Þ
The above equations provide two ways of representing

the current response to an applied voltage, as in-phase and
out of-phase components or as a modulus and a phase
angle. These describe the admittance of the circuit also. We
have admittance here because we have measured the
current response to voltage. By using the symbol Y for
the admittance, we can write:

Y wð Þ ¼ 1

Rt
þ jwCdc ð12Þ

or

Y wð Þ ¼ Y 0 þ j � Y 00 ð13Þ

where Y′ is referred to as the admittance real component
and Y″ as the imaginary component. The impedance Z is the
inverse value of the admittance used to describe the circuit
representing the corrosion process at the metal surface.
Note that we have described the admittance as Y (ω)
because it depends on frequency. Generally, but not in this
case, both Y′ and Y″ also depend on frequency. Y′ is
proportional to the in-phase current component. Here, we
need to recognize that j is equal to the square root of −1,

and the expression for the admittance is a complex number
and can be manipulated, added, as such.

For the simple circuit in Fig. 4, the admittance is:

Y ¼ 1=Rþ jwC ¼ 1þ jwC R=R ð14Þ
For the impedance, the inverse expression is:

Z ¼ RI þ 1=jwC ð15Þ
To convert this to an expression with real and imaginary

parts, we remove the j term from the bottom:

Z ¼ R=1þ w2C2R2
� �� jw2C2R2

�
1þ w2C2R2

� � ¼ Z 0 þ Z 00

ð16Þ
To express this term of modulus and phase angle,

Zj j ¼ R
.

w2C2R2
� �1=2 ð17Þ

tan 7 ¼ �wCR ð18Þ
With a conventional impedance measurement, we

provide an AC signal given by Eq. (6) and measure as
current response given by Eq. 11. Formally, this is an
admittance measurement because we look at the current
response to an applied voltage. The analyzer processes the
data to provide either the impedance modulus Zj j and phase
angle or the real and imaginary components of the
impedance related to the corrosion current [6].

Experimental data

Experimental data base provided by Gonzalez-Rodriguez
et al. [11] consists of different values of inhibitor
concentration, time, real component, and imaginary com-
ponent. Table 1, shows the experimental data number for
the three type of curves (experimental total data 2801),
which was enough to develop the neural network model.

Table 1 Experimental data number used in each type of curve

Type of curve Type 1 Type 2 Type 3

Experimental data number 585 1,176 1,040

Fig. 5 The neural network computational model. K Input number, In
input, Out output, Continuous lines weights and bias
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Neural network layering

The neurons are grouped into distinct layers and
interconnected according to a given architecture. As in nature,
the network function is determined largely by the connections
between elements (neurons). Each connection between two
neurons has a weight coefficient attached to it. The standard
network structure for an approximation function is the
multiple-layer perception (or feed forward network). The feed
forward network often has one or more hidden layers of
sigmoidal neurons followed by an output layer of linear
neurons. Multiple layers of neurons with nonlinear transfer
functions allow the network to learn nonlinear and linear
relationships between input and output vectors. The linear

output layer lets the network produce values outside the −1
to +1 range [7]. For the network, the appropriate notation is
used in two-layer networks [8]. A simplified sketch of the
network’s structure and behavior is presented in Fig. 5.

The number of neurons in the input and output layers is
given, respectively, by the number of input and output
variables in the process under investigation. In this work,

  Neural
Network

(Weights and bias)

ppm

Z’(w)

+

_

    Optimization method
   [Levenberg-Marquardt]

Exp
Type

SimType

RSME

Z’’(w)

Time

Temperature
        50  C

O

ppm Time

Nacl 3%

Fig. 6 Recurrent network archi-
tecture to obtain the type of
corrosion and the procedure
used for learning neural network

Fig. 7 Proposed neural network model to calculate the type of
corrosion

Fig. 8 Experimental versus simulated type values by the proposed
neural model
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the input layer consists of four variables, while the output
layer contains one variable for the model (see Fig. 7). The
optimal number of neurons in the hidden layer (s) ns is
difficult to specify and depends on the type and complexity
of the task. This number is usually determined iteratively.
Each neuron in the hidden layer has a bias b (threshold),
which is added to the weighted inputs to form the neuron
input n (Eq. 19). This sum, n, is the argument of the transfer
function f.

n ¼ Wi 1;1f gln1 þWi 1;2f gln2 þ . . . . . .þWi 1;kf glnk þ b ð19Þ
The coefficients associated with the hidden layer are

grouped into matrices Wi (weights) and b1 (biases). The
output layer computes the weighted sum of the signals
provided by the hidden layer, and the associated coeffi-
cients are grouped into matrices Wo and b2. Using the
matrix notation, the network output can be given by Eq. 20:

Out ¼ g Wo� f Wi� lnþ b1ð Þ þ b2ð Þ ð20Þ
Hidden layer neurons may use any differentiable transfer

function to generate their output. In this work, a hyperbolic
tangent sigmoidal transfer function and a linear transfer
function were used for f and g, respectively [8]. The
number of network coefficients (weights and biases) is
given by Eq. 21.

m ¼ n lnþ 1ð Þ þ Out nþ 1ð Þ ð21Þ

Neural network learning

A learning (or training) algorithm is defined as a procedure
that consists of adjusting the coefficients (weights and
biases) of a network, to minimize an error function (usually
a quadratic one) between the network outputs, for a given
set of inputs, and the correct (already known) outputs. If
smooth nonlinearities are used, the gradient of the error
function can be computed by the classical back propagation
procedure [9]. Previous learning algorithms used this
gradient directly in a steepest descent optimization, but
recent results have shown that second-order methods are far
more effective. In this work, the Levenberg–Marquardt
algorithm optimization procedure—in the Matlab Neural

Network Toolbox [8]—was used. This algorithm is an
approximation of Newton’s method, which was designed to
approach second-order training speed without having to
compute the Hessian matrix [10]. Despite the fact that
computations involved in each iteration are more complex
than in the steepest descent case, the convergence is faster,
typically by a factor of 100. The root mean square error
(RMSE) is calculated with the experimental values and
network predictions. This calculation is used as a criterion
for model adequacy (Fig. 6). Experimental database (see
Table 1) were split into learning database (50% of
experimental data set) and testing database (50%
of experimental data set) to obtain a good representation
of the situation diversity.

Results and discussion

The neural network model which was developed (Fig. 7)
involved five neurons (ns=5) in the hidden layer (20 weights
(Wi=20; Wo=5) and six biases (b1=5 and b2=1)) to predict
a type of curve of impedance (see Figs. 2b, 3 and 4).

In the learning database given by the root-mean-square
error (RSME) trial versus the iteration number, the
algorithm was worked out for one to five neurons in the
hidden layer. The obtained results (data not shown) proved
that the typical learning error decreased when the number
of neurons in the hidden layer increased; this is evident as
the number of adjusted parameters increased. Nevertheless,
one of the problems that occur during feed-forward neural
network training is called “over-fitting” [12]. The comparison
of the RSME calculated for the learning and testing database
is a good criterion to optimize the number of iterations and
avoid over-fitting. In this neural network, the RSME showed
that for six neurons in the hidden layer, the learning data-
base value was small with respect to the testing database.
Then, according to RSME results, the optimal number of
neurons in the hidden layer was five. Figure 8 shows the
experimental data versus simulated data of the impedance
type. We could observe how the simulated data have the
expected relationship with respect to experimental data. The
residuals were small for all experiments in the learning base
(R=0.992).

Table 2 Statistical parameters obtained for the neural network

Parameter Wi Wo b1 b2

With L=1, S=5, and K=4 0.3003 −32.7024 −7.4404 23.2590 −4.4196 1.7903 0.5509
57.938 16.2788 7.2504 −5.4220 −7.3929 −5.5939
−7.7319 46.0374 5.1389 −13.0085 0.3761 0.4960
0.6019 −30.0359 −3.6111 26.4383 4.6466 1.6267

−62.5418 −18.8813 −5.8075 6.0983 −7.2973 6.1744
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Table 3 Comparison between simulated and experimental data

Test A Test B Test C

Input parameters Type of curve Input parameters Type of curve Input parameters Type of curve

Time
(h)

ppm Z′(w) Z″(w) Exp Sim Time
(h)

ppm Z′(w) Z″(w) Exp Sim Time
(h)

ppm Z′(w) Z″(w) Exp Sim

4 0 1.19069 0.0322 1 1.3062 4 25 68.8801 −44.3194 2 1.9952 6 10 1.60271 −0.26547 3 3.0254
4 0 1.18535 0.02948 1 1.3062 4 25 75.0442 −48.6856 2 1.9952 6 10 1.62703 −0.30568 3 3.0254
4 0 1.16405 0.00937 1 1.3062 4 25 82.368 −53.3533 2 1.9952 6 10 1.66239 −0.35331 3 3.0253
4 0 1.16717 −0.0051 1 1.3062 4 25 89.7784 −58.094 2 1.9952 6 10 1.69813 −0.40329 3 3.0253
4 0 1.15947 −0.0252 1 1.3062 4 25 97.83 −62.9574 2 1.9952 6 10 1.76257 −0.46524 3 3.0252
4 0 1.16288 −0.0421 1 1.3062 4 25 106.563 −67.5201 2 1.9952 6 10 1.81581 −0.52069 3 3.0252
4 0 1.16742 −0.0595 1 1.3062 4 25 116.286 −73.3311 2 1.9952 6 10 1.87578 −0.58371 3 3.0251
4 0 1.21354 −0.0801 1 1.3062 4 25 127.053 −77.8159 2 1.9952 6 10 1.9499 −0.65828 3 3.0251
4 0 1.22558 −0.1041 1 1.3062 4 25 137.922 −84.4778 2 1.9952 6 10 2.03073 −0.73819 3 3.025
4 0 1.2263 −0.1292 1 1.3062 4 25 150.129 −90.6962 2 1.9952 6 10 2.131 −0.82847 3 3.0249
4 0 1.23698 −0.1561 1 1.3062 4 25 161.155 −96.317 2 1.9952 6 10 2.2389 −0.92447 3 3.0248
4 0 1.25409 −0.1877 1 1.3062 4 25 174.893 −103.18 2 1.9952 6 10 2.34984 −1.04208 3 3.0247
4 0 1.27317 −0.226 1 1.3062 4 25 189.33 −112.256 2 1.9952 6 10 2.47825 −1.15676 3 3.0246
4 0 1.28476 −0.2695 1 1.3062 4 25 205.131 −121.399 2 1.9952 6 10 2.6151 −1.30016 3 3.0245
4 0 1.31001 −0.3226 1 1.3062 4 25 221.87 −130.212 2 1.9952 6 10 2.78729 −1.45342 3 3.0244
4 0 1.33582 −0.3807 1 1.3062 4 25 238.993 −139.908 2 1.9952 6 10 2.96205 −1.62667 3 3.0242
4 0 1.3717 −0.455 1 1.3062 4 25 258.27 −152.242 2 1.9952 6 10 3.17017 −1.81633 3 3.0241
4 0 1.37994 −0.5294 1 1.3062 4 25 279.675 −161.144 2 1.9952 6 10 3.37963 −2.03329 3 3.0239
4 0 1.39774 −0.6202 1 1.3062 4 25 301.582 −175.126 2 1.9952 6 10 3.57959 −2.26034 3 3.0237
4 0 1.45495 −0.735 1 1.3062 4 25 324.669 −190.952 2 1.9952 6 10 3.8486 −2.53422 3 3.0234
4 0 1.52727 −0.8689 1 1.3062 4 25 353.817 −206.816 2 1.9952 6 10 4.18533 −2.84758 3 3.0232
4 0 1.61435 −1.0221 1 1.3062 4 25 381.423 −221.914 2 1.9951 6 10 4.49418 −3.19229 3 3.0229
4 0 1.71127 −1.2124 1 1.3061 4 25 414.538 −239.526 2 1.9951 6 10 4.83873 −3.58914 3 3.0225
4 0 1.84323 −1.4242 1 1.3061 4 25 445.404 −258.26 2 1.9951 6 10 5.17392 −4.06298 3 3.0221
4 0 1.98184 −1.6678 1 1.3061 4 25 481.214 −278.066 2 1.9951 6 10 5.57537 −4.61766 3 3.0216
4 0 2.14409 −1.9467 1 1.3061 4 25 519.618 −299.251 2 1.9951 6 10 6.00105 −5.27948 3 3.021
4 0 2.34103 −2.2711 1 1.3061 4 25 560.624 −322.452 2 1.9951 6 10 6.50924 −6.07932 3 3.0203
4 0 2.6268 −2.6497 1 1.306 4 25 603.857 −347.367 2 1.9951 6 10 7.05344 −7.03615 3 3.0194
4 0 2.88799 −3.081 1 1.306 4 25 650.211 −375.101 2 1.9951 6 10 7.68975 −8.18373 3 3.0184
4 0 3.19819 −3.5829 1 1.306 4 25 699.565 −405.701 2 1.995 6 10 8.4007 −9.5541 3 3.0171
4 0 3.55638 −4.1683 1 1.3059 4 25 752.547 −439.757 2 1.995 6 10 9.25896 −11.2 3 3.0156
4 0 3.95513 −4.8479 1 1.3059 4 25 809.301 −478.089 2 1.995 6 10 10.2856 −13.1708 3 3.0138
4 0 4.43189 −5.6386 1 1.3058 4 25 870.663 −521.088 2 1.995 6 10 11.5641 −15.476 3 3.0118
4 0 4.99349 −6.5642 1 1.3058 4 25 937.133 −569.37 2 1.995 6 10 13.1455 −18.2373 3 3.0093
4 0 5.61 −7.6066 1 1.3057 4 25 1,007.78 −622.16 2 1.995 6 10 15.0476 −21.3383 3 3.0065
4 0 6.42004 −8.8906 1 1.3056 4 25 1,090.73 −686.069 2 1.9949 6 10 17.6576 −25.1304 3 3.0031
4 0 7.32152 −10.368 1 1.3055 4 25 1,178.64 −754.169 2 1.9949 6 10 20.8836 −29.335 3 2.9995
4 0 8.32633 −11.99 1 1.3054 4 25 1,273.09 −828.783 2 1.9949 6 10 24.7732 −33.9017 3 2.9955
4 0 9.5749 −14.002 1 1.3052 4 25 1,383.94 −917.23 2 1.9949 6 10 30.0148 −39.0752 3 2.991
4 0 11.0646 −16.312 1 1.3051 4 25 1,506.86 −1013.43 2 1.9948 6 10 36.5113 −44.2759 3 2.9867
4 0 12.7254 −18.854 1 1.3049 4 25 1,637.66 −1117.66 2 1.9948 6 10 44.1092 −48.8816 3 2.983
4 0 14.8282 −21.938 1 1.3047 4 25 1,794.44 −1232.04 2 1.9948 6 10 53.42 −53.7303 3 2.9791
4 0 17.1581 −25.318 1 1.3045 4 25 1,958.98 −1353.37 2 1.9948 6 10 63.5802 −57.2269 3 2.9766
4 0 20.0881 −29.36 1 1.3042 4 25 2,144.97 −1482.36 2 1.9947 6 10 74.9022 −59.2725 3 2.9755
4 0 23.4369 −33.835 1 1.3039 4 25 2,364.58 −1629.69 2 1.9947 6 10 86.5954 −59.2791 3 2.9762
4 0 27.5843 −38.814 1 1.3035 4 25 2,589.62 −1778.12 2 1.9947 6 10 97.689 −57.7069 3 2.9784
4 0 32.4631 −44.426 1 1.3032 4 25 2,845.81 −1926.77 2 1.9947 6 10 108.345 −55.1325 3 2.9815
4 0 38.2065 −50.706 1 1.3028 4 25 3,114.89 −2089.37 2 1.9946 6 10 117.299 −51.6464 3 2.9852
4 0 45.0989 −57.486 1 1.3023 4 25 3,411.08 −2266.31 2 1.9946 6 10 126.08 −48.2906 3 2.9889
4 0 53.3012 −64.969 1 1.3019 4 25 3,721.6 −2441.62 2 1.9946 6 10 131.924 −43.6166 3 2.9936
4 0 62.8789 −72.987 1 1.3014 4 25 4,066.65 −2639.27 2 1.9946 6 10 138.432 −40.9049 3 2.9965
4 0 74.1556 −81.044 1 1.301 4 25 4,414.36 −2854.65 2 1.9946 6 10 143.067 −36.8351 3 3.0006
4 0 87.3862 −89.181 1 1.3006 4 25 4,800.5 −3072.53 2 1.9946 6 10 147.361 −34.5326 3 3.003
4 0 102.7 −96.865 1 1.3004 4 25 5,206.11 −3332.49 2 1.9946 6 10 152.705 −33.0706 3 3.0047
4 0 120.072 −103.51 1 1.3003 4 25 5,656.77 −3620.83 2 1.9946 6 10 157.531 −30.6655 3 3.0073
4 0 139.442 −108.27 1 1.3006 4 25 6,153.85 −3902.13 2 1.9946 6 10 162.774 −28.5193 3 3.0097
4 0 160.418 −110.58 1 1.3011 4 25 6,642.91 −4242.41 2 1.9945 6 10 167.346 −24.9825 3 3.0133
4 0 182.459 −110.08 1 1.3021 4 25 7,244.25 −4651.69 2 1.9945 6 10 172.055 −21.863 3 3.0165
4 0 204.413 −106.34 1 1.3034 4 25 7,839.14 −5064.88 2 1.9945 6 10 175.237 −18.5839 3 3.0198
4 0 225.437 −98.519 1 1.3051 4 25 8,547.84 −5508.44 2 1.9945 6 10 176.893 −14.0106 3 3.0242
4 0 244.603 −88.314 1 1.3069 4 25 9,285.3 −6004.4 2 1.9945 6 10 177.41 −11.1774 3 3.0269
4 0 261.12 −75.859 1 1.3089 4 25 1,0111.4 −6552.77 2 1.9945 6 10 180.188 −7.67294 3 3.0304
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According to the obtained model, Table 2 gives the
optimum coefficients (Wi, Wo, B1 and B2) of the best fit of
the model for five neurons in the hidden layer. These
coefficients are used to validate the model with fresh data
(testing data). It must be clarified that this model is done to
predict types of corrosion but not corrosion rates. To carry
out this, it is necessary to train the neuronal network to
measure or predict the charge transfer resistance, Rct, and
use Eq. 1, where Rp is now Rct.

Model validation

The model thus calculated was then validated using the
values of test database. Table 3 shows three tests with
different input values and compares experimental and
simulated types of curves. The neural model fitted these
unknown data well, including the three types of curves,
which are complex and very difficult to predict. In the first
test, the simulated values were about 1.3, which was
considered the curve of corrosion type 1. To the other test
(type 2–3) the simulated values were expected values with
respect to experimental corrosion type. This difference for
simulated values for type 1 and 2–3 is caused by the
experimental data number considered for each type of
curves (see Table 1). The residuals in the testing database
were small and their distribution well-balanced (data not
shown). The regression coefficient, R=0.99, confirmed this
satisfactory agreement. Furthermore, the test of lack of fit
(LOF) [13] was used to confirm the dispersion inherent in
the data. As a result of this test, the F-statistic value was
172.78, and according to hypotheses for an α=0.01, the
F*>6.366. We reject the null hypothesis in favor of the
alternative which is lack of linear fit [13]. Consequently,
there is sufficient evidence at the α=0.01 level to conclude
that there is lack of linear fit. The model thus developed
was able to predict the type of corrosion as a function of
process parameters throughout the experimental domain.

Conclusions

This study proposed a neural network model that can
predict the corrosion type in a pipeline steel as a function of
four input parameters and exhibit a good ability for

generalization. The four input parameters used to determine
simulation of corrosion type were the inhibitor concentra-
tion, experimental time, real experimental component, and
imaginary experimental component. The neural network
model was successfully trained with experimental database
and validated with a fresh database (in the specified range
of key operating conditions).

The model thus developed may enable the implementa-
tion of smart sensors for online quality determination
(corrosion type) in pipeline steel. Corrosion type can be
computed from inhibitor concentration, time, real, and
imaginary component. The validity of the corrosion type
thus computed will be confirmed by comparing the
measured and computed output values. The computation of
corrosion type using the neural model is then possible to halt
the process when the target corrosion type has been attained.
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